
^ELECTEfff
k JULI 7,1995i; :..!

Word Level Symbolic Model Checking
A New approach for

Verifying Arithmetic Circuits
E. Clarke X. Zhao

May, 1995
CMU-CS-95-161

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Approved ft» public rsiecus«
_W8mbutka Unlimited

19950712 045
This research was sponsored in part by the National Science Foundation under Grant No. CCR-9217549,

by the Semiconductor Research Corporation under Contract No. 94-DJ-294, and by the Wright Laboratory,
Aeronautical Systems Center, Air Force Materiel Command, USAF, and the Advanced Research Projects
Agency (ARPA) under Grant No. F33615-93-1-1330. The US Government is authorized to reproduce and
distribute reprints for Government purposes, notwithstanding any copyright notation thereon.

Views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of Wright Laboratory or the United States
Government.

DTIS QUALITY IIIBPECTED 5

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

i
D

Disfribution / 0

Availobihty Codes

Dist

M

Avail ano'/or
Special

Keywords: automatic verification, temporal logic, model checking, binary decision di-
agrams, multi-terminal binary decision diagrams, binary moment diagrams, hybrid decision
diagrams, word level properties, arithmetic circuit, Pentium, division circuit

Abstract

The highly-publicized division error in the Pentium has emphasized the importance of formal
verification of arithmetic operations. Symbolic model checking techniques based on binary
decision diagrams (BDDs) have been successful in verifying control logic. However, lack of
proper representation for functions that map boolean vectors into integers has prevented
this technique from being used for verifying arithmetic circuits.
We have used hybrid decision diagrams to represent the integer functions that occur in
the arithmetic circuit verification. For the state variables corresponding to data bits, our
representation behaves like a binary moment diagram (BMD) while for the state variables
corresponding to control signals, it behaves like a multi-terminal BDD (MTBDD). By using
this representation, we are able to handle circuits with both control logic and wide data
paths.
We have extended the symbolic model checking system SMV so that it can also handle
properties involving relationships among data words. In the original SMV system, atomic
formulas could only contain state variables. In the extended system, we allow atomic for-
mulas to be equations or inequalities between expressions as well. These expressions are
represented as hybrid decision diagrams.
The extended model checking system enables us to verify circuits for division and square
root computation that are based on the SRT algorithm used by the Pentium. We are able
to handle both the control logic and the data paths. The total number of state variables
exceeds 600 (which is much larger than any circuit previously checked by SMV).

1. Introduction

Proving the correctness of arithmetic operations has always been an important problem. The
importance of this problem has been recently emphasized by the highly-publicized division
error in the Pentium. In order to verify such circuits, it is necessary to represent and
manipulate functions that map boolean vectors to integer values. In this paper, we describe
how to represent and manipulate such functions efficiently using Multi-Terminal Binary
Decision Diagrams (MTBDDs) [8]. An MTBDD is like an ordinary Binary Decision Diagram
(BDD)[3] except that the terminal nodes can be arbitrary integer values instead of just 0
and 1. We have also investigated a technique for representing such integer valued functions
by BDD arrays. Unfortunately, both representations have problems when they are used
for verifying arithmetic circuits. For the functions that arise in this type of application, the
number of possible values is exponential in the number of bits. Therefore, the MTBDDs also
have exponential size. Since the BDD size for the middle bit of a combinational multiplier
is exponential in the length of its operands, the BDD array representation is exponential for
multiplication. Moreover, arithmetic operations on BDD arrays are very expensive.

Bryant and Chen have developed another representation called the Binary Moment Dia-
gram (BMD)[4]. They use the expansion / = f\x=0 + xf, where /' is equal to f\x=1 - f\x=0,
instead of the Shannon expansion. This gives a compact representation for certain functions
that have exponential size MTBDDs. They have used this word level representation to verify
the data paths of some arithmetic circuits. The BMD representation for both the circuit
and the specification are constructed and compared. The circuit is correct if both BMDs are
exactly the same. However, depending on the implementation and the control logic, there
can be cases in which the circuit is correct but the BMDs are not identical. Another problem
is that this approach cannot handle inequalities. Thus, it is impossible to check some of the
properties that are needed in order to avoid the Pentium error.

We first show that the BMD of a function is the MTBDD that results from applying
the inverse Reed-Muller transformation [12] to the function. The transformation can be
computed using the techniques that we have previously developed for manipulating large
matrices [8]. The transformation matrix in this case is the Kronecker product [2] of a
number of identical 2x2 matrices. We show that the Kronecker products of other 2x2
matrices behave in a similar way. In fact, the transformations obtained from Kronecker
products of other matrices will in many cases be more concise than the BMD. We have
further generalized this idea so that the transformation matrix can be the Kronecker product
of different matrices. In this way, we obtain a representation, called the Hybrid Decision
Diagram (HDD), that is more concise than either the MTBDD or the BMD. In addition to
algorithms for performing arithmetic operations, we have developed an efficient algorithm to
compute the set of variable assignments that satisfy an arithmetic relation. For the class of
linear functions, which includes many of the functions that occur in practice, such operations
are guaranteed to have complexity that is polynomial in the width of the data words.

Our representation for functions that map boolean vectors into the integers enables us
to extend temporal logic model checking [6, 7] so that it can handle arithmetic circuits. In
traditional model checking systems, specifications are expressed in a propositional temporal
logic, and circuit designs and protocols are modeled as state-transition systems. An efficient

search procedure is used to determine automatically if the specifications are satisfied by the
transition systems. The main disadvantage of this approach is the state explosion which can
occur if the system being verified has many components that can make transitions in parallel.
Recently, the size of the transition systems that can be verified by model checking techniques
has increased dramatically because of the use of BDDs [5]. Although such symbolic model
checking techniques have been successful in verifying control logic, these techniques cannot
be directly used for verifying arithmetic circuits.

One of the main reasons that the symbolic model checking systems cannot handle arith-
metic circuits is the lack of a concise representation for expressions that involve words with
integer values. We have used hybrid decision diagrams to represent the integer functions
that occur in the arithmetic circuit verification. For the state variables corresponding to
data bits, our representation behaves like a BMD while for the state variables corresponding
to control signals, it behaves like an MTBDD. By using this representation, we are able to
handle circuits with both control logic and wide data paths. We have extended the symbolic
model checking system SMV [11] so that it can also handle properties involving relationships
among data words. In the original SMV system, atomic formulas could only contain state
variables. In the extended system, we allow atomic formulas to be equations or inequalities
between expressions as well. These expressions are represented as hybrid decision diagrams.

In the word level model checking system, propositions denoting nodes in circuits are repre-
sented as BDDs and are computed in exactly the same way as in the original symbolic model
checking system. Words are arrays of propositions, each of which corresponds to a single
bit. Expressions are composed of arithmetic operations applied to words. Hybrid decision
diagrams can be computed for words and expressions using the algorithms for arithmetic
operations. Atomic formulas can be relations between expressions, and their BDD repre-
sentations can be computed by the algorithm that handles arithmetic relations. After the
BDD representations for the atomic formulas are generated, the BDDs for static formulas
and temporal formulas are computed in the same way as in ordinary model checking. In
particular, the fixpoint computations are exactly the same in both cases.

By using the word level model checking system, we have successfully verified circuits for
division and square root computation that are based on the SRT algorithm used by the
Pentium. We are able to handle both the control logic and the data paths. All of the
states in the finite state machine for the control logic have been verified. Moreover, we have
proved invariant properties that guarantee the correctness of the data values and prevent
overflows. The total number of state variables exceeds 600 (which is much larger than any
circuit previously checked by SMV).

This paper is organized as follows: In Section 2, we discuss different techniques for rep-
resenting functions that map boolean vectors into the integers. In Section 3, we give the
logic that is used for specifying the properties involving the data values. In this section, we
also describe how formulas can be represented by a special class of hybrid decision diagrams.
In Sections 4 and 5 algorithms for handling arithmetic operations and arithmetic relations
are given. Section 4 gives the algorithms for computing addition, multiplication and the
if-then-else operation for this representation. Section 5 gives an algorithm that com-
putes the BDD representation for the set of variable assignments that satisfy an equation or
an inequality. In Section 6, we discuss how the word level model checking is performed. We

illustrate the power of our technique in Section 7 by showing how word level model checking
can be used to verify a division circuit based on the radix-4 SRT algorithm that is similar to
the one used by the Pentium. The paper concludes in Section 8 with a discussion of possible
future research directions.

2. Hybrid Decision Diagrams

Ordered binary decision diagrams (BDDs) are a canonical representation for boolean for-
mulas proposed by Bryant [3]. They are often substantially more compact than traditional
normal forms such as conjunctive normal form and disjunctive normal form. They can also
be manipulated very efficiently. Hence, BDDs have become widely used for a variety of
CAD applications, including symbolic simulation, verification of combinational logic and,
more recently, verification of sequential circuits.

A BDD is similar to a binary decision tree, except that its structure is a directed acyclic
graph rather than a tree, and there is a strict total order placed on the occurrence of
variables as one traverses the graph from root to leaf. Algorithms of linear complexity exist
for computing BDD representations of ->/ and fVg from the BDDs for the formulas / and g.

Let / : Bm —* Z be a function that maps boolean vectors of length m into integers.
Suppose ni,..., njv are the possible values of /. The function / partitions the space Bm

of boolean vectors into N sets {S\, • ■ ■, SN}, such that Si = { x | f(x) = Hi}. Let /; be
the characteristic function of Si, we say that / is in normal form if f(x) is represented as
Y^iLi fi{%) ' ni- This sum can be represented as a BDD with integers as its terminal nodes.
We call such DAGs Multi-Terminal BDDs (MTBDDs) [8, 1].

Let / : Bm —* Z be a function that maps boolean vectors of length m into integers.
Suppose ni,... ,njv are the possible values of /. The function / partitions the space Bm

of boolean vectors into N sets {Si, • • •, SAT}, such that Si = { x \ f(x) = n,- }. Let /; be
the characteristic function of Si, we say that / is in normal form if f(x) is represented as
YliLi fi(x) • ni- This sum can be represented as a BDD with integers as its terminal nodes.
We call such DAGs Multi-Terminal BDDs (MTBDDs) [8, 1].

Any arithmetic operation 0 on MTBDDs can be performed in the following way. There is
an efficient algorithm that computes the operation in time linear to the sizes of the MTBDDs
of both operands.

h(x) = f(x)Qg(x)
N N'

i=l i=i

JV N'

i=l 3=1

N"

= YJ V fi(x)9j(x)n"
fc=l niQn'—n'l

Functions that map boolean vectors into the integers can also be represented as arrays

3

of BDDs. These BDDs have boolean values and each corresponds to one bit of the binary
representation of the function value. In general, it is quite expensive to perform operations
using this representation.

Let M be a 2k x 2l matrix over Z. It is easy to see that M can be represented as a
function M : Bk+l —> Z, such that Mij — M(x,y), where x is the bit vector for i and y is
the bit vector for j. Therefore, matrices with integer values can be represented as integer
valued functions using the representation shown above. We can also perform various matrix
operations using our MTBDD representation. In particular, matrix multiplication can be
computed in the following way: Suppose that two matrices A and B have dimensions 2k x 21

and 2l x 2m, respectively. Let C — A x B be the product of A and B, then C will have
dimension 2k x 2m. If we treat A and B as integer-valued functions, we can compute the

product matrix C as
C(x,z) = YdA{x,y)B{y,z),

y

where J2g means "sum over all possible assignments to y". Although this operation works
well in many cases, the worst case complexity can be exponential in the number of variables.

Recently, Bryant and Chen[4] have developed a new representation for functions that
map boolean vectors to integer values. This representation is called the Binary Moment
Diagram (BMD) of the function. Instead of the Shannon expansion / = xfi + (1 — x)/0,
they use the expansion f — fo + xf, where /' is equal to fi — fo- After merging the common
subexpressions, a DAG representation for the function is obtained. They prove in their
paper that this gives a compact representation for certain functions which have exponential
size if represented by MTBDDs directly.

There is a close relationship between this representation and the inverse Reed-Muller
transformation [12]. The matrix for the inverse Reed-Muller transformation is defined re-

cursively by
o -i o I ^n-l " I
OO — 1 On —I c C

\ — Jn-1 Jn-1)

which has a linear MTBDD representation. Let i G Bn be the binary representation of
integer 0 < i < 2n. A function f : Bn -^ N can be represented as a column vector
where the value of the ith entry is f(i). We will not distinguish between a function and its
corresponding column vector. The inverse Reed-Muller transformation can be obtained by
multiplying the transformation matrix and the column vector / = S x / using the technique
described in previous section.

Theorem 1 The MTBDD of f is isomorphic to the BMD of f.

Proof: The theorem is easy to prove by induction on the number of variables.

Base Case: If the number of variables is 0, the function is a constant and f = f. Both the
MTBDD of / and the BMD for / are terminal nodes and therefore isomorphic.

Induction Step: Let / : Bn -> N. The roots of both the BMD for / and the MTBDD
for / are xn. The left child of the root of the BMD for / is the BMD for f\Xn=0, while
the right child is the BMD for f\Xn=i - f\Xn=o- When / is represented as a column vector,

the upper half is f\Xn=o and the bottom half is f\Xn=i- The inverse Reed-Muller matrix is

I ™_1 _,]. The result of the transformation is therefore:
\ — <->n-l <->n-l /

/ Sn-1 0 \ x / /|,B=0 \ = / S„-l X /|,B=0 \
\ —'S'n-l -^n-l / V /la;n=1 / \ ^n-1 X (/l^n=l - f\x„=o))

If this vector is represented by MTBDD, the left child is the MTBDD for the inverse Reed-
Muller transform of f\Xn=o and the right child is the MTBDD for the inverse Reed-Muller
transform of f\Xn-i — f\x„=o- By induction hypothesis, both children are isomorphic to the
children of the root of the BMD for /. Therefore the BMD of / is isomorphic to the MTBDD

for /. □

The inverse Reed-Muller matrix can be represented as the Kronecker product [2] of n

identical 2x2 matrices:

The inverse Reed-Muller transformation is not unique in this respect. Other transfor-
mations that are defined as Kronecker products of 2 x 2 matrices may also provide concise
representations for functions mapping boolean vectors into integers. In fact, the Kronecker
product of any non-singular 2x2 matrices can be used as a transformation matrix and will
produce a canonical representation for the function. Moreover, if the transformation matrix
is a Kronecker product of different 2x2 matrices, we still have a canonical representation of
the function. We call transformations obtained from such matrices hybrid transformations.

A similar strategy has been tried by Becker [10]. However, his technique only works
for the boolean domain. When using his technique, all of the transformation matrices, the
original function and the resulting function must have boolean values. Our technique, on
the other hand, works over the integers. By allowing integer values, we can handle a wider
range of functions. Moreover, we can obtain larger reduction factors since we have more
choices for transformation matrices.

We can apply this idea to reduce the size of the BDD representation of the functions.
Since there is no known polynomial algorithm to find the hybrid Kronecker transformation
that minimizes BDD size, we use a greedy algorithm to reduce the size. If we restrict the
entries in the matrix to the set {0,1,-1}, then there are six matrices we can try. For
each variable, we select the matrix that gives the smallest BDD size. The BDDs obtained
from such transformations are called Hybrid Decision Diagrams (HDDs). We have tried this
method on the ISCAS85 benchmark circuits. In some cases we have been able to reduce the
size of the BDD representation by a factor of 1300. However, reductions of this magnitute
usually occur when the original function has a bad variable ordering. If dynamic variable
ordering is used, then our method gives a much smaller reduction factor.

3. The Logic

Symbolic model checking techniques based on Binary Decision Diagrams (BDDs) have been
successful in verifying control logic [5]. However, lack of proper representation for functions
that map boolean vectors into integers has prevented this technique from being used for
verifying arithmetic circuits. We have experimented with the different representations that
are introduced in previous sections. Unfortunately, there are fundamental problems with
applying either the MTBDD or the BDD array representations for verification of arithmetic
circuits. For the functions that arise in this type of application, the number of possible values
is exponential in the number of bits. Therefore, the MTBDDs also have exponential size.
On the other hand, arithmetic operations on BDD arrays are very expensive. In particular,
since the BDD size for the middle bit of a combinational multiplier is exponential in the
length of its operands, the BDD array representation is exponential for multiplication.

Bryant and Chen [4] have shown that the BMD gives a compact representation for certain
functions that have exponential size MTBDDs. They have used this representation to verify
the data paths of some arithmetic circuits. They are able to conclude that a circuit is correct
if the BMDs for the circuit and the specification are exactly the same. However, depending
on the implementation and the control logic, there can be cases in which the circuits are
correct but the BMDs are not identical. Moreover, since their technique cannot handle
inequalities, it is impossible to check some of the properties that are needed in order to
avoid the Pentium error.

We have used hybrid decision diagrams to represent the integer functions that occur in
the arithmetic circuit verification. In particular, for the state variables corresponding to data
bits, we use the inverse Reed-Muller transform while for the state variables corresponding to
control signals, we use the identity transform. Therefore, for data variables, this representa-
tion behaves like a BMD while for control variables, it behaves like a MTBDD. By using this
representation, we are able to handle circuits with both control logic and wide data paths.
Since this representation is a special case of the hybrid decision diagrams, all the algorithms
mentioned in previous sections can be applied.

By using this representation, we have extended the symbolic model checking system
SMV [11] so that it can also handle properties involving relationships among data words. In
the original SMV system, atomic formulas can only contain state variables. In the extended
system, we allow atomic formulas be equations or inequalities between expressions as well.
These expressions are represented as hybrid BDDs. The logic that we use is the follows:

• Atomic propositions: Ap = {p\,... ,pk}

• Propositional formulas: Prop ::= Ap | Prop A Prop | -'Prop

• Words: Word ::— (Prop, Prop,..., Prop)

• Expressions:
Exp ::= Constant | Word | next(Word) | Exp © Exp | if SF then Exp else Exp,

where 0 can be +, —, or x.

• Atomic Formulas: AF ::= Ap \ {A | E}(Exp ~ Exp), where ~ can be =, <, or <.

6

• Static Formulas: SF ::= AF \ SF A SF | ^SF

• Temporal Formulas: TF ::= SF | TF A TF | -TF | AXTF | {A | E}[TF U TF]

A model is given by:

• States: S = 2Ap.

• Transition relation: R C S x 5

• Initial states: So ^ S

• Valuation mapping for atomic propositions V : Ap x S —> {0,1}

The semantics for the logic is given by:

• Propositional formula interpretation: P : Prop x S —* {0,1}

P(Pi,s) = V(Pi,s); P(/iA/2) = P(/ljS)AP(/2,s); P(-^f,s) = ^P(f,s)

• Word interpretation: W : PFOTY/ X 5 —> iV

W((/o,/i,...,/„),3) = f:P(/i,a)2i

• Expression interpretation: E : Exp xS xS —> A7. In the following, s' is needed because
it is possible to have the next state value of a word in an expression.

E{ex 0 e2, s, s') = E{eu s, s') 0 E(e2, s, s')

E(ii f then ea else e2, s, 5') = if (5 |= /) then E(ei,s, s') else E(e2,6, s')

E(next(u>),s,s') = W(w,s')

• Atomic formula interpretation. Because of the nondeterministic behavior of the sys-
tem, there can be more than one possible next state for a given state. Therefore, a
path quantifier is needed in order to quantify over the next state that appears in the
semantics of the expressions.

s \=Pi & V(pi,s) = 1

s \= A(ei ~ e2) <£> \/s'.R(s, s') ->• E(eu 5, s') ~ E(e2,5, s')

s \= E(ei ~ e2) <^ 3s'.i2(s,5') A E(eus,s') ~ E(e2,5,5')

• The semantics of SF and TF are the same as in CTL.

This logic can naturally be divided into three layers. The top layer contains atomic
formulas, static formulas and temporal formulas. The second layer contains words and
expressions. The third layer contains atomic propositions and propositional formulas. All
of the objects in the top and bottom layers are boolean functions while the objects in the
second layer are functions that map boolean vectors into the integers. Therefore, in the word
level model checking system, all of atomic propositions, propositions, atomic formulas, static
formulas and temporal formulas are represented as BDDs; while words and expressions are
represented as hybrid decision diagrams.

4. Arithmetic operations on hybrid decision diagrams

In order to be able to perform model checking on the logic discussed in the previous section, it
is desirable to implement various operations on hybrid decision diagrams. We consider scalar
multiplication, addition and multiplication of two functions, and the if-then-else operation.
Although we only discuss a special kind of hybrid decision diagrams in this and the following
section, similar algorithms exist for handling general hybrid decision diagrams as well. As
discussed in the previous section, we use a uniform hybrid transformation for all functions.
Let the transformation matrix be H.

We use /' to denote the result after applying the hybrid transformation to a function /.
Scalar multiplication is simple to perform.

(c-f)' = Hx(c-f) = c(Hxf) = c-f

Finding the sum of two function is also simple.

{f + gy = Hx(f + g) = Hxf + Hxg = f' + g'

Next, we consider how to perform multiplication. Let the top level variable is a?;. Suppose

/'

Figure 1: BDDs for /' and g

(f-g)'i (f-9)'r

(f-9)'

Figure 2: BDD of (/ • g)'

f, g' are shown in Figure 1, and the resulting function (/ • g)' is shown in Figure 2. There
are two possibilities. If x,- is a control signal, the identity transformation is used at this level.

Then
(/ • 9)1 = (/ ■ 9)'U=o = (/U=o • <?U=o)' = (// • 9i)'

(f ■ g)'r = (/ • </)'U=l = (/Ui=l • 9*,=l)' = (fr ■ 9r)'

When Xi is a data bit, the inverse Reed-Muller transformation is used at this level. In this
case, the computation is more complicated.

U'9)'i = (f ■ 9)%t=o = (fU1=o ■ g\Xt=o)'= (fi ■ 9i)'

U-g)'r = (f ■ g)'\^i - (f ■ 9)%,=o

= (/U=i ■ g\xi=i) — (/Ui=o ■ ^1^=0) .

= (Ui + fr) ■ (gi + gr))'- (ft ■ gi)'

= (fr-gi)'+(fr9r)'+{fr-9r)'

Since both (/ • g)[and (/ • g)'r can be computed in term of (// • g\)', (// • gr)', (fr ■ gi)1, and
(fr ' gr)', we can compute the transformation of the product in a recursive manner. If we
store these intermediate results, the total number of recursive calls to compute (/ • g)' will
be at most |/'||#'|. Because of the additions that are needed in the computation, the worst
case complexity can still be exponential. However, in practice, this algorithm works quite
well.

Likewise, the recursive computation of the if-then-else operation can be given as follows.
If the top variable Xj is a control signal,

(if c then / else g)\ = (if C\X~Q then // else g{)'

(if c then / else g)'r = (if c\Xi=1 then fr else gr)'

When Xi is data bit,

(if c then / else g)\ = (if c\Xi=0 then fi else g{)'

(if c then / else g)'r =

(if c\Xi=i then // else gi)' + (if c\Xi=1 then fr else gr)' - (if c\Xi=0 then // else g{)'

5. Equations and inequalities

Model checking for word level properties also requires computing the set of assignments that
satisfy /1 ~ /2, where ~ can be one of =, 7^, <, <, >, or >. Finding the set of assignments
that satisfy an inequality can be reduced to the problem of finding the set of assignments that
make a function / positive. Equations can be handled in a similar manner. A straightforward
way of solving the problem is to convert / to an MTBDD and then pick the terminal nodes
with the correct sign. However, this does not work very well in general, because some
functions have MTBDDs with exponential size but hybrid BDDs of polynomial size. For

example, let /x = Y4L0 x$ anc^ h — Ej=o Vj^j ■ ^otn °f these functions and their difference
have linear size BMDs. The BDD for the set of assignments satisfying /1 - f2 > 0 also has
linear size. But the MTBDD size for /1 - f2 is exponential.

9

We have developed an algorithm that can substantially reduce the cost for computing
arithmetic relations between certain functions. Suppose that we want to compute the set
of assignments that satisfies / > 0. Each branch in the hybrid decision diagram for /
corresponds to a subset of variable assignments. If the maximum value of a branch is less
than or equal to 0, then none of the assignments in this branch satisfy the inequality. If the
minimum value of a branch is greater than 0, then all assignments in this branch satisfy the
inequality. In both cases, we avoid checking the signs of the individual assignments in the

branch.

To obtain a good algorithm for this problem, it is important to be able to compute upper
and lower bounds for a branch in an HDD. An algorithm for this purpose is given below. If
the intermediate results are stored, the algorithm takes time linear in the number of HDD

nodes.

bound_values(f, upper, lower)
begin

if(f is terminal node)
upper = lower = f.value;

if(Top level is BMD)
lower = min(lower(left(f)), lower(left(f)) + lower(right(f)));
upper = max(upper(left(f)), upper(left(f)) + upper(right(f)));

else
lower = min(lower(left(f)), lower(right(f)));
upper = max(upper(left(f)), upper(right(f)));

end

The improved algorithm for computing the BDD for the set of assignments that make the
function / positive is given below. A similar algorithm is used to find the set of assignments

that make a function zero.

bdd greater_than_0(f)
begin

if(f is terminal node)
if(f.value > 0) return(True);
else return(False);

bound_values(f, upper, lower);
if(upper <= 0) return(False);
if(lower > 0) return(True);

left = greater_than_0(left(f));

if(top level is BMD)
right = greater_than_0(left(f) + right(f));

else

10

right = greater_than_0(right(f));
return(hdd_if_then_else(level(f), left, right));

end

The improved algorithm works extremely well for verification of arithmetic circuits. The
following theorem guarantees the efficiency of this algorithm for the set of linear expressions.
Most of the formulas that occur during the verification of the SRT division algorithm are
in this class. These expressions have the form / = TZ=icifi, where /,- = YTj^Xifi3 f°r

1 < i < m and the Cj's are integer constants. Suppose all variables are data variables,
then the Hybrid Decision Diagrams are identical to BMDs. We use the variable ordering

xin, x2n, • • ■, xmn, • ■ ■, «io, «20, • • •, xm0. Because f\Xij=i - f\Xij=o = eil3 is a constant, the
HDD for / is shown in Figure 3.

c 2
2

1

n

^ n
c.2

JL"

^ n
c„2

*io)

C2

Xm0)

Figure 3: BMD for YT=i *U

Lemma 1 The number of recursive calls to the great er_than_0 procedure for computing

the BDD for f at each level cannot exceed 4(X^i lci|)-

Proof: Suppose we consider the recursive calls to the BMD nodes that has Xij as the top
variable. The inverse transformation matrix for BMD nodes is the 2x2 Reed-Muller matrix

I j. Thus, the recursive calls in the procedure greater_than_0 apply to either the left

child or the sum of both children. The BMD nodes that are recursively called with Xij as top
variable must be the sum of the sub-BMD in Figure 3 with top variable x^ and some of the
right children of ancestors of the sub-BMD. The right children of all of the ancestor nodes
of this sub-BMD are constant nodes with the value Ck2l where 1 < k < m and I > j. The

11

C 2J

v<S=

c 2J

X \

X
20) c,

c
2

/ \
d2j c

Figure 4: BMD nodes explored at level x v

sum of those right children can be rewritten in the form d2j where d is an integer constant.
Therefore the BMD nodes with top variable Xij have the form shown in Figure 4.

f Ck ck > 0 , „ _ f 0 ei > 0
1 0 otherwise fc ~~ | Ck otherw:

When we apply the procedure bouncLvalues to this BMD, the upper bound computed is

equal to dV + £;=o E£Li 42' + E*U c'k2J ■ Tnis can be proved by induction on the structure
of the BMD. The base case is trivial. For the induction step, consider the node with the
variable x^. There are two cases. The first case is when i < m. In this case, by induction
hypothesis, upper (left (f)) is equal to d2j + £/=o £™=1 c'k2

l + £™=i+1 c'k2
j. Since the right

branch is a constant, upper (right (f)) is Cj2J. Therefore,

upper = max(upper(left(f)), upper(left(f))+ upper(right(f)))

= upper(left(f)) + if upper(right(f)) >= 0 then upper(right(f)) else 0
j—1 m m

= d2j + E E42' + E 42i + (if °i>= °then ci else °)2i

1=0 fc=l k=i+l

j—1 m m

= da? + E E 42' + E 4* + ^
j—1 m m

= ^ + EE42' + E42J

1=0 fc=l fc=i

Similar proof can be obtained for the other case when i = m. In the same way, we are able to
prove that the lower bound computed by the procedure is d2j + J2i=~o YX=i c'k^ + TX=i 4'2J-
Hence

j—1 m m

upper = dy' + EE^' + E^"
;=o k=l k=i

12

3 m

/=0 k=l
m

= <&+E4(2,+1-i;
m

m

= 2^ +2 £4)
Jfc=l

j—1 m m

lower = dy + EE^' + Ec^'

i m

> <# + £ E <4'a'
/=0 k=l
m

= & + £ 4(2J+1 -1)
fe=i
m

> d2i + £4'2i+1

fe=i

= 2>(d +2 £4)
fc=l

If c? < —2 ^ZfcLi 4> then upper is negative or 0 and the algorithm will return constant
false. Likewise, if d > — 2 XX=i 4> l°wer is positive and the algorithm will return constant
true. Therefore, the recursive calls to the children can only occur when —2 J2T=i 4 < ^ ^
-2 ££=1 4'- Since d is integer, there can be at most 2 x (-2 £^=1 4 + 2 £^=1 4) = 4£^=1 |cfc|
recursive calls. [|

Theorem 2 27ie complexity of greater_than_0 /or / is 0(n2 YX=i \ck\)-

Proof: There are n levels. Each level takes 4£™=1 \ck\ recursive calls. Each recursive call
takes time 0(n) to compute the upper and lower bound values. Therefore, the total time is

0(n2E*Ul<*|).n
In the case of linear inequalities, all the new BMDs that are generated have the form of

c + g, where c is a constant and g is an existing BMD. If we remember the constant without
actually adding it to the BMDs, we are able to avoid generating new BMD nodes. After
introducing this technique, the complexity for compute great er_than_0(f) can be further

reduced to 0(nYJk=i \ck\)-

6. Model Checking for Word Level Properties

Model checking is a technique of finding the set of states in a state-transition graph where a
given CTL formula is true. There is a program called EMC that solves this problem using

13

efficient graph-traversal techniques. If the model is represented as a state-transition graph,
the complexity of the algorithm is linear in the size of the graph and in the length of the
formula. The algorithm is quite fast in practice [6, 7]. However, an explosion in the size of
the model may occur when the state-transition graph is extracted from a finite state concur-
rent system that has many processes or components. In symbolic model checking systems [5],
BDDs are used to represent the transition relations and sets of states. The model check-
ing process is performed by fixpoint operations on these BDDs. By using symbolic model
checking techniques, the size of the transition systems that can be verified has increased
dramatically. Although such techniques have been successful in verifying control logic, they
cannot be directly used for verifying arithmetic circuits. This is because expressions that
involve words with integer values cannot be handled properly.

Now that we are able to handle arithmetic operations and arithmetic relations, it is
possible to extend the symbolic model checking algorithm so that it can handle word level
properties. BDDs for the transition relation and all propositions are generated in exactly the
same way as in the original symbolic model checking system. The hybrid decision diagram
representation of a word (f0, /i, • ■ • ? fn) can be computed as

n

2(if /.• then 2{ else 0)

using the operations mentioned above. Although this process is exponential in the worst
case, it works fairly well in practice. The hybrid decision diagram representation of most
expressions can be computed using the techniques discussed above. The only exception
is the next operation, which can be performed by variable substitution. The substitution
replaces all of the current state variables in the hybrid decision diagram for the word by their
corresponding next state variables. The algorithm to obtain the BDD representing the set of
variable assignments that make an algebraic relation true can be used to compute the BDD
for atomic formulas. After the BDD representation for the atomic formulas is generated,
the BDDs for static formulas and temporal formulas are computed in the same way as in
ordinary model checking. In particular, the fixpoint computations are exactly the same in
both cases.

Since we have used the same algorithm to compute the transition relation as in the
ordinary model checking algorithm. The word level model checking algorithm does not work
well when the transition relation does not have a concise representation. As an example,
let's consider a multiplier. Let x and y be the input registers and z be the output register.
Suppose the transition relation can be represented as follows:

Tr(x,y,z) = Tr'(x,y) A (next(z) = x x y)

Obviously, the BDD representation of the transition relation has exponential size since
the BDD representation of the middle bit of a multiplier is exponential. This problem can
sometimes be avoided by conjunctive decomposition of the transition relation. Let x,y, and
z be the state variables that encode the current state value of x,y and z, respectively. Let
x',y', and z' be the state variables that encode the next state value of x,y and z. Suppose
that we want to verify a word level property of the form f(x,y, z). There may be appearances
of next(z); if so, we can replace them by x x y at the word level and obtain a new formula.

14

Hopefully, the resulting formula will be independent of z and the BDD representation of the
formula can be denoted as f'(x,y). In this case, we can use Tr' as the transition relation to
perform the fixpoint operations. Even if /' depends on some bits of z, we can often obtain
a much simpler transition relation by eliminating the conjuncts that give the values of bits

that are not needed.

7. Verification of an SRT radix 4 division circuit

By using the word level model checking system, we have successfully verified circuits for
division and square root computation that are based on the SRT algorithm used by the
Pentium. We are able to handle both the control logic and the data paths. The division
circuit that we investigated has 5 states, idle, init, loop, last and rem. The state transition
graph for these states are shown in Figure 5. This circuit can perform two different operations

Figure 5: The controlling states for the division circuit

division and remainder. When the operation is division, the steps in the computation are

idle —> init —> loop* —> last —» idle

When the operation is remainder, the steps are

idle —► init —>• loop * —> last —> rem —> idle

Figure 6 gives the data path of the circuit at loop state. All the words have 70 bits. However,
only leading bits of the partial remainder and multiples of divisor are used to compute the
quotient digit for the next cycle.

15

Figure 6: The data path for the division circuit at loop state

We have verified the circuit with both control logic and the data path. All states of the
finite state machine have been checked. Let r be partial remainder, q be quotient, d be the
divisor. We have checked the properties

• The expression r -\- q • d always equals the dividend.

• The computation does not overflow. This is guaranteed by ■|d<r<|d.

For example, we have proved that at init state, the remainder is the dividend and the
quotient is zero. Therefore, the initial value for r + q • d equals the dividend. Moreover, the
inequality mentioned above holds at the init state.

SPEC AG(state = init -> r = dividend & q = 0)

SPEC AG(state = init -> (-8) * d <= 3 * r <= 8 * d)

16

4 f

1.000 __ __

1.001 — —

1.010 — —

1.011 — —

1.100 — —

1.101 __ —

1.110 2
1.111 2

gl (remainder — first 7 bits)

g3 010101010101010101010101

g4 001100110011001100110011
g5 111100001111000011110000
g6 000011111111000000001111
g7 111111111111000000000000

 2-2-2 A -1 -1 0 0 1 1 2 2 2
 2-2-2 B -1 -1 0 0 1 1 C 2 2 2
 2-2-2-2-1-1 D 0 0 1 1 1 2 2 2 2
 2-2-2-2 B -1 -1 D 0 0 1 1 1 2 2 2 2
 2-2-2-2-1-1-1 0 0 0 E 1 1 C 2 2 2 2
-2-2-2-2-2-1-1-1 0 0 0 0 1 1 1 2 2 2 2 2
-2-2-2-2 B -1 -1 -1 0 0 0 0 1 1 1 2 2 2 2 2
-2-2-2-2-1-1-1-1 0 0 0 0 1 1 1 1 2 2 2 2 2 —

(divisor -- first 4 bits) A = -(2 - g2 * gl)
B = -(2 - g2)
C = 1 + g2
D = -(1 - g2)
E = g2

Table 1: The quotient prediction table for the division circuit

We have also proved that the inequality always holds in the loop states, and that r + q-d
is invariant with respect to left shifting.

SPEC AG(state = loop -> A[((-8) * d <= 3 * r <= 8 * d) U state = last])

SPEC AG((state = loop & ((-8) * d <= 3 * r <= 8 * d))
-> A((r + q * r) * 4 = next(r + q * r)))

The above properties are sufficient to guarantee that in the loop state, r + q-d always equals
the dividend after left shifting. Similar properties are proved for the last and rem states. In
addition, we have verified a circuit for computing square roots. The total number of state
variables for the circuit that we verify exceeds 600 (which is much larger than any circuit
previously checked by SMV).

8. Directions of Future Research

We have verified a floating point division circuit based on the SRT algorithm using the word
level model checker. We plan to experiment on more circuits. Possible applications include
the floating point multiplier, floating addition, etc.

17

* >

Our algorithm for solving arithmetic relations works extremely well for linear equations
and inequalities. Although the current algorithm can handle some nonlinear equations and
inequalities as well, it may be possible to extend this algorithm or to find a new algorithm
that can handle more complicated nonlinear equations and inequalities.

There is still one problem with this technique. It can only be used for circuits that
maintain the exact value of the data. When rounding occurs, the functions become less
regular and the size of hybrid BDD representation is likely to explode. In these cases, the
new value obtained after rounding can be described by a system of inequalities, and the
verification process reduces to solving such systems. In another research project, we have
built a theorem prover based on symbolic computation system Mathematica. The theorem
prover is called Analytica [9] and is quite good at handling equations and inequalities. We
believe that after some modification, Analytica will be useful for solving the inequalities that
arise because of rounding in computer arithmetic.

References

[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. In Proceedings of the
1993 Proceedings of the IEEE International Conference on Computer Aided Design.
IEEE Computer Society Press, November 1993.

[2] R. Bellman. Introcution to matrix analysis, chapter 5. McGraw-Hill, 1970.

[3] R.E.Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-

actions on Computers, C-35(8), 1986.

[4] R. E. Bryant and Y. A. Chen. Verification of arithmetic functions with binary moment
diagrams. In Proceedings of the 32nd ACM/IEEE Design Automation Conference. IEEE
Computer Society Press, June 1995.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142—170,
June 1992.

[6] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Logic of Programs: Workshop, Yorktown Heights, NY, May
1981, volume 131 of Lecture Notes in Computer Science. Springer-Verlag, 1981.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems, 8(2):244-263, 1986.

[8] E. M. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for
large boolean functions with applications to technology mapping. In Proceedings of the
30th ACM/IEEE Design Automation Conference. IEEE Computer Society Press, June

1993.

18

<• i}

[9] E. M. Clarke and X. Zhao. Analytica: A theorem prover for mathematica. The Journal

of Mathematica, 3(1), 1993.

[10] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski. Efficient rep-
resentation and manipulation of switching functions based on ordered kroenecker func-
tional decision diagrams. In Proceedings of the 32nd ACM/IEEE Design Automation
Conference. IEEE Computer Society Press, June 1994.

[11] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993. To

appear.

[12] D. E. Müller. Application of boolean algebra to switching circuit design and error
detection. IRE Trans., 1:6-12, 1954.

19

